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Abstract 

Parts 1-3 present and criticize Partee and Kamp’s 1995 well known 

analysis of the typicality effects. The main virtue of this analysis is in the 

use of supermodels, rather than fuzzy models, in order to represent 

vagueness in predicate meaning. The main problem is that typicality of an 

item in a predicate is represented by a value assigned by a measure 

function, indicating the proportion of supervaluations in which the item 

falls under the predicate. A number of issues cannot be correctly 

represented by the measure function, including the typicality effects in 

sharp predicates; the conjunction fallacy; the context dependency of the 

typicality effects etc. In Parts 4-5, it is argued that these classical problems 

are solved if the typicality ordering is taken to be the order in which 

entities are learnt to be denotation members (or non-members) through 

contexts and their extensions. A modified formal model is presented, which 

clarifies the connections between the typicality effects, predicate meaning, 

and its acquisition.             
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1. What are the typicality effects? 

 

Speakers order entities or sub-kinds (Dayal 2004; sub-kinds are also 

called exemplars) by their typicality in predicates. For example, a robin is 

often considered more typical of a bird than an ostrich or a penguin.  

These ordering judgments show up in an unconcious processing effect, 

namely in online categorization time: Verification time for sentences like a 

robin is a bird, where subjects determine category membership for a typical 

item, is faster than for sentences like an ostrich is a bird, where subjects 

determine membership of an atypical item (Rosch 1973, Armstrong, 

Gleitman and Gleitman 1983). 

In addition, speakers consider features like feathers, small, flies and 

sings, as typical of birds. Crucially, the more typical birds are more typical 

in these features (Rosch 1973). 

These judgments are highly context dependent. For example, within a 

context of an utterance like: the bird walked across the barnyard, a chicken 

is regarded as a typical bird, and categorization time is faster for the 

contextually appropriate item chicken than for the normally typical but 

contextually inappropriate item robin (Roth and Shoben 1983). 

In addition to these basic effects, there are robust order of learning 

effects. In a nutshell, typical instances are acquired earlier than atypical 

ones, by children of various ages and by adults (Mervis and Rosch 1981, 

Rosch 1973, Murphy and Smith 1982); in recall tasks, typical instances are 

produced before atypical ones (Rosch 1973, Batting & Montague 1969); 

categories are learned faster if initial exposure is to a typical member 

(Mervis & Pani 1980), than if initial exposure is to an atypical member, or 

even to the whole denotation in a random order; and finally, typical (or 

early acquired) instances are remembered best (Heit 1997), and they affect 

future learning (encoding in memory) of entities and their features (Rips 

1975, Osherson et al 1990). In sum, typicality is deeply related to the order 

in which instances are learnt to be members in predicate denotations.  

These findings were replicated time and again (Mervis and Rosch 

1981). Yet, the mental models underlying them and their relation to 

predicate meaning are still a puzzle. To see this, we will now review the 

well known typicality theory, which is most frequently cited by formal 

semanticists, namely – The Supermodel Theory. For a more detailed 

discussion of the typicality effects and other model types, see Sassoon 

2005.   
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2. The Supermodel Theory (Partee and Kamp 1995)  

 

2.1 Background: Multiple valued logic in the analysis of typicality   

 

Partee and Kamp's main innovation within the analysis of typicality, is in 

the use of a logic with three truth values and the technique of 

Supervaluations (van Fraassen 1969; Kamp 1975; Fein 1975; Veltman 1984; 

Landman 1991), as opposed to the standard use of a logic with multiple truth 

values (such as fuzzy logics) in the analysis of typicality in artificial 

intelligence, cognitive psychology, and linguistics (Zadeh 1965; Lakoff 

1973; Osherson & Smith 1981; Lakoff 1987; Aarts et al 2004).  

 

2.1.1 Fuzzy models    

 

In classical logics, a proposition may take as a truth value either 0 or 1. In 

fuzzy logics, a proposition may take as a truth value any number in the real 

interval [0,1]. For example, such a model can assume the following facts:  

 

[1] The truth value of the proposition a robin is a bird is 1;  

The truth value of the proposition a goose is a bird is 0.7; 

The truth value of the proposition an ostrich is a bird is 0.5; 

The truth value of the proposition a butterfly is a bird is 0.3; 

The truth value of the proposition a cow is a bird is 0.1.  

 

These values indicate the typicality degrees of the individuals or kinds 

denoted by the subjects in the predicate bird. 

More precisely, in such models, predicates are not associated with sets 

as denotations. Rather, for every predicate P, a characteristic function, 

cm(P,d), assigns to each entity d in the domain of individuals D, a value in 

the real interval [0,1], its degree of membership in P. Moreover, each 

predicate is associated with a prototype p, i.e. the best member possible. 

Finally, a degree function cP (a distance metric) associates pairs of entities 

with values in the real interval [0,1]. If, for example, r is a robin, b a blue   

jay and o an ostrich, then: cP(r,b)< cP(r,o), i.e. r is more similar to b than to 

o. The typicality of an entity d in P is represented as the distance of d from 

the prototype of P, cP(d,p). This distance function satisfies several 

constraints. For example, cP is such that any entity has zero distance from 

itself  (∀d∈D: cP(d,d) = 0); cP is symmetric (∀d,e∈D: cP(d,e) = cP(e,d)); and cP 

has the property called the triangle inequality (∀d,e,f∈D: cP(d,e) + cP(e,f) ≥ 

cP(d,f)). Most important for our purposes is the monotonic decreasing relation 



Typicality: An Improved Semantic Analysis 3 
   

 

between d and c: The distance of entities from the prototype p of P 

inversely correlates with their membership degree in P: 

 

[2]  ∀d,e∈D: (cP(d,p) ≤ cP(e,p)) → (cm(P,d) ≥ cm(P,e)).  

 

Typicality degrees are assumed to correspond to degrees, or probabilities, 

of membership in the category. This leading intuition shows up also in the 

rules that predict the typicality degrees in complex predicates. There are 

three composition rules for cm: 

 

[3] 1. The complement rule for ¬:  cm(¬P,d)= 1 – cm(P,d)  

 2. The minimal-degree rule for ∧: cm(P∧Q,d)= Min(cm(P,d),cm(Q,d)) 

 3. The maximal-degree rule for ∨: cm(P∨Q,d)= Max(cm(P,d),cm(Q,d)) 

 

Consider, for instance, the complement rule for negated predicates in 

(3.1). The degree of a goose in not-a-bird is assumed to be the complement 

of its degree in bird (e.g. 1- 0.7). This rule is directly inspired by the idea that 

the probability that p is the complement of the probably that not-p.    

Similarly, the minimal-degree rule for conjunctions in (3.2) states that 

an item’s degree in a modified noun like brown apple is the minimal degree 

among the constituents, brown and apple. This rule, and other versions of 

the rule for conjunctions and modified nouns in fuzzy models, are directly 

inspired by the fact that the probability that p∧q cannot exceed the 

probability that just p, or just q.  

 

2.1.2 Problems of fuzzy models    

 

Osherson and Smith 1981 have shown a variety of shortcomings of fuzzy 

models. Following them, Partee and Kamp 1995 have argued at length 

against such models. The main problem for these models is that they 

generate wrong predictions.  

Consider, for example, the-minimal-degree rule. This rule predicts that 

the typicality degree of, e.g. brown-apples, cannot be bigger in brown apple 

than in apple. Hence, this rule fails to predict the empirically well 

established conjunction effect (Smith et al 1988) or fallacy (Tversky et al 

1983), i.e. the finding that, according to speakers' intuitive judgments, both 

the typicality degree (Smith et al 1988), and the likelihood of category 

membership (Tversky et al 1983), of brown-apples, is bigger in brown apple 

than in apple. 
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The minimal-degree rule is most problematic when it comes to 

contradictory and tautological predicates. Intuitively, the degree of all 

entities in P∧¬P and P∨¬P ought to be 0 and 1, respectively. But fuzzy 

models fail to predict this. For example, if a goose is a bird to degree 0.7, 

then according to the complement rule, a goose is not a bird to degree 0.3. 

Given this, the minimal degree rule predicts that a goose is a bird and not a 

bird to degree 0.3, rather than to degree 0. 

Another problem has to do with the fact that the degree function in these 

models is total, though knowledge about typicality is often partial. For 

example, if one bird sings and the other flies, which one is more typical? We 

cannot tell out of context. This problem highlights the need for more context 

dependency in the representation of typicality. Partee and Kamp 1995 have 

argued at length for the importance of this aspect. Yet, we will see in part 3 

that their proposal is also insufficient in this respect.     

A problem which usually goes unnoticed has to do with the complement 

rule. It is indeed true that the typicality orderings of negated predicates are 

essentially the reverse of the orderings of the predicates that are being 

negated (see, for instance, the findings reported in Smith et al 1988), yet 

exceptions to this rule are quite common. Why? Because negated predicates 

are often contextually restricted. For example, the set of non-birds is 

frequently assumed to only consist of animals. In such contexts, non-animals 

are intuitively assigned low typicality degrees both in the predicate bird and 

in the negated predicate non-bird (rather than a low degree in bird and a high 

degree in non-bird, as predicted by the complement rule). This judgment is 

not captured because the relevant contextual factors are not represented.  

 

2.1.3 Intermediate summary     

 

We saw that multiple truth values, or probability degrees, as means to 

indicate typicality degrees, are problematic in many respects. An alternative 

theory is the Supermodel Theory (Partee and Kamp 1995). This analysis 

uses the same types of mechanisms, namely – a membership degree 

function cm, a prototype p, and a typicality degree function cp. However, 

this analysis differs in two crucial respects. First, it replaces fuzzy logics 

with three valued logics. Second, the typicality degrees are not always 

coupled with the membership degrees. With these two differences, the 

analysis is claimed to be significantly improved. However, while indeed 

improved in some respects, we will see in part 3 that this analysis is highly 

limited and problematic in other respects. In part 4 we will propose a novel 
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analysis which completely abandons the use of membership degree 

functions, prototypes, and distance functions. 

 

2.2 Supermodels  

 

A supermodel M
*
 consists of one partial model M, which I will call 

'context' M. In M, denotations are only partially known. For example, the 

denotation of chair in a partial context M may consist of only one item – the 

prototypical chair, pchair. The denotation of non-chair may consist of only one 

item too, which is very clearly not a chair, say – the prototypical sofa, psofa. 

This means that in M we don't yet know if anything else, (an armchair, a 

stool, a chair with less than 4 legs, a chair without a back, a chair which is not 

used as a seat, a chair which is not of the normal size etc.), is a chair or not. 

In addition, M is accompanied by a set T of total models (the 

supervaluations in van Fraassen 1969), i.e. a set of all the possibilities seen in 

M to specify the complete sets of chairs and non-chairs. In each t in T, each 

item is either in the denotation of chair or in the denotation of non-chair. 

 

 

 

 
 

 

Figure 1: The context structure in a supermodel M
* 

 

Formally, a supermodel M
*
 for a set of predicates A and a set of entities D 

is a tuple <M,T,m> such that: 

 

[1]  M is a partial model: Predicates are associated with partial  

denotations in M, <[P]
+
M,[P]

-
M>.  

For example, if [chair]
+
M = {d1}, [chair]

-
M = {d3}, d2 is in the 

gap, we don't yet know if it is a chair or not. 

 

[2]  T is a set of total models which are completions of M: 

       Predicates are associated with total denotations, which are 

        monotonic extentions of their denotations in M:  

∀t∈T, ∀P∈A:           

2.1. Maximality: [P]
+
t ∪ [P]

-
t = D  (denotations are total). 

2.2. Monotonicity: [P]
+
M ⊆ [P]

+
t;      [P]

-
M ⊆ [P]

-
t.    

E.g. in each t∈T, d2 is added to [chair]
+
t or [chair]

-
t. 
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Given this basic ontology, the membership degree of an individual d in a 

vague noun like chair is indicated by the size or measure of the set of total 

contexts in which d is a chair, m({t∈T: d∈[chair]
+
t}). 

For example, the prototypical chair, pchair, is a chair in all total 

possibilities, so its membership degree is 1. The prototypical sofa, psofa, is a 

chair in no possibility, so its membership degree is 0. If an armchair d is a 

chair in a third of the cases, its membership degree is 1/3 etc.:  

 

[3] m is a measure function from sets of total models to real numbers 

      between 0 and 1, i.e. a function which satisfies the following 

      constraints (Partee and Kamp 1995, p. 153):   

3.1 m(T) = 1;           

3.2 m({}) = 0;           

3.3 ∀T1,T2, s.t. T1⊂T2: m(T2) = m(T1) + m(T2–T1) etc.   

 

[4] The membership-degree of d in P, cm(d,P), is given by the measure 

m of the set of total models in which d is P:  

cm(d,P) = m({t∈T: d∈[P]
+
t})   

e.g. 1 = cm(d1,chair) > cm(d2,chair) > cm(d3,chair) = 0.         

 

There is no doubt that this model is better suited to the representation of 

natural language than fuzzy models. For example, we now predict 

membership degrees 0 and 1 in contradictory and tautological predicates 

respectively, as opposed to the prediction of the minimal degree rule in 

fuzzy models (cf. 2.1). This is because for all total contexts t in T, it holds 

that no entity falls under P∧¬P, and all entities fall under P∨¬P. Thus, even 

if, say, a certain stool is a chair to degree 0.7 and not a chair to degree 0.3 

(due to being regarded as a chair in 0.7 of the total contexts in T, and being 

regarded as a non-chair in the rest of T), it is a chair and not a chair to 

degree 0, and a chair or not a chair to degree 1. 

 

2.3 The representation of typicality in the Supermodel Theory  

 

2.3.1 Typicality in basic predicates  

 

In this theory, a degree of membership and a degree of typicality are taken 

to be two separate things. The typicality degree of an entity in a predicate is 

represented by the entity’s similarity to (or distance from) the predicate’s 

prototype. Typicality and membership are assumed to be coupled only in 
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vague nouns like chair. In sharp nouns like bird or grandmother, they may 

be dissociated. Thus: 

 

[5] A predicate P is associated with a tuple <p, cm, cP> such that:  

1. p is the prototype – the best possible P.  

2. cm(d,P), is d’s membership-degree in P: the degree to which d is P. 

As explained in 2.2, it is given by the measure m of the set of 

total contexts in which d is a chair:  cm(d,P) = m({t∈T: d∈[P]
+
t}.  

3. cP(d,P) is d’s typicality-degree in P: d's distance from P’s 

prototype.  

 

How are the values of the typicality degree function, cP(d,P), indicated? 

Generally, they are given by the values of the membership function: cP ≅ cm: 

e.g. in chair: the more typical entities fall under [chair]
+
 in more of the total 

models t in T. However, Partee and Kamp distinguish between different 

predicate types in the following ways: 

 

[6] Predicate types: 

1. +/– Vague:  

The denotations of non-vague predicates like bird, unlike those 

of vague predicates like chair, are total already in M. That is, 

everything is either a bird or a non-bird. There is no gap: 

[bird]
+
M ∪ [bird]

-
M = D.   

2. +/– Prototype:  

Predicates like tall or odd number, unlike bird, grandmother, 

red etc., have no prototype (because there is no maximal 

tallness or oddness).  

3. +/– Typicality-is-coupled-with-membership, cP ≅≅≅≅ cm  
(The original term is: +/–the-prototype-affects-the-denotation): 

In predicates like bird or grandmother, unlike predicates like 

chair, typicality and membership are separated (not coupled). 

 
+Prototype  –Prototype 

 (cm ≠≠≠≠ cP) (cm = cP) 

+Vague tall, wide, heavy, not red adolescent, tall tree red, chair, shy 

–Vague even, odd, inanimate, not a bird bird, grandmother ∅ 

Table 1: Predicate types in Partee and Kamp's analysis 
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There are at least two reasons for the separation of typicality and 

membership in predicates like bird: 

(1) Intuitively, an ostrich d is a bird even in M, i.e. cm(d,bird) = 1; but it is an 

atypical bird, i.e. cP(d,bird) < 1. Thus, cm ≠ cP.  

(2) Intuitively, an ostrich is always a bird, i.e. for any entity d, the set of total 

contexts in which d is an ostrich, {t∈T: d∈[ostrich]
+
t}, is always a subset 

of the set of total contexts in which d is a bird, {t∈T: d∈[bird]
+
t}. So 

cm(d,ostrich) is always smaller than cm(d,bird):  

 

cm(d, ostrich)  =  m({t∈T: d∈[ ostrich]
+
t})  

≤  m({t∈T: d∈[ bird]
+
t})   = cm(d, bird)        

 

But intuitively, d can be more typical of an ostrich than of a bird, so 

cP(d,ostrich) is greater than cP(d,bird).  

 

cP(d, ostrich)  ≥ cP(d, bird).        

 

Again, cm ≠ cp.  

 

Let us classify the fact that d can be more typical of an ostrich than of a 

bird, as stated in (2), under the name the sub-type effect (Sassoon 2005). 

 

2.3.2 Typicality in complex predicates  

 

Recall the conjunction effect or fallacy, i.e., the intuitive judgments that, 

e.g., a brown-apple is regarded as more typical, or more likely a member, in 

brown apple than in apple (see in 2.1.2): 

 

cP(d, brown apple)   ≥ cP(d, apple).        

 

This effect cannot be represented using Partee and Kamp’s membership 

degree function cm(d,P). Why? Because in any total context in which an entity 

d is a brown apple, d is an apple, i.e. the set {t∈T: d∈[ brown apple]
+
t} is 

always a subset of the set {t∈T: d∈[apple]
+
t}. Hence, the membership degree 

of d in brown apple can maximally reach d’s degree in apple and not more:  

  

cm(d,brown apple)   =  m({t∈T: d∈[brown apple]
+
t})  

≤  m({t∈T: d∈[apple]
+
t}) =  cm(d2,apple)        
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However, Partee and Kamp observe that modifiers like brown receive a 

distinct interpretation in each of the local contexts created by the noun they 

modify. For example, brown is interpreted differently when applied to apple, 

skin, shelf, dress etc. Thus, Partee and Kamp propose to replace cm in 

modified nouns like brown apple by a new function, which may assign d a 

higher value than cm(d,apple) or cm(d,brown). The modified membership function for 

the modified noun brown apple, cm(d,brown /apple) is given by d’s degree in 

brown, m(d,brown), minus 'a' – the minimal brown degree that the measure 

function m assigns to an apple. This value is normalized by the distance 

between 'a' - the minimal - and 'b' - the maximal - brown degrees assigned to 

apples. This normalization procedure ensures that the result ranges between 0 

and 1:   

 

[7]  The modified membership function for modified nouns:  

Let a and b be the minimal and maximal brown degrees among the 

apples in M, respectively:       cm(d,brown /apple) = (m(d,brown) – a) / (b – a) 

 

For example, a brown apple may be assigned degree 0.9 in brown; the 

minimal brown degree existing among the apples may be 0, because some 

apples are not brown at all; the maximal brown degree existing among the 

apples may be 0.95, assuming that no apple is maximally brown. If so: 

 

 cm(d,brown /apple) = (0.9 – 0) / (0.95 – 0) = 0.974. 

 

The value 0.974 indeed exceeds d’s degree in brown, 0.9, and possibly 

also d’s degree in apple, as desired. If indeed, the proposed mechanism helps 

to capture the conjunction fallacy, it seems like we could retain the idea that 

the typicality degrees in predicates like brown apples are coupled with the 

membership degrees, which in turn, are indicated by the modified 

membership functions. However, we will now see that this is not the case. 

  

3. Problems in the Supermodel Theory  

 

The idea that measures-functions which range over total contexts 

(supervaluations) can represent typicality has some fundamental problems. 
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 3.1 Typicality degrees of denotation members  

 

The first problem has to do with the fact that the measure function m 

fails to account for the fact that denotation members are not necessarily 

associated with the maximal degree of typicality, 1, but rather they may 

take any degree of a whole range of typicality degrees. For example, within 

a certain context, I may consider three-legged seats with a back as chairs, 

but as less typical chairs than four-legged seats with a back.   

This limitation of the measure function is particularly problematic in     

vague nouns (sharp nouns) like bird. Even atypical examples like ostriches 

and penguins are known to be birds, i.e. already in M they are considered 

members in [bird]
+
M (Partee and Kamp 1995). The bird denotations are 

assumed to be completely specified, or in other words, not to vary across 

different total contexts. This is the standard way in which to represent the 

fact that predicates like bird are not – or are much less – vague than 

predicates like chair or tall. However, this is also the reason for which the 

measure function cannot indicate typicality in sharp predicates. Given that 

they are always known to be birds, the membership degree of atypical 

examples like ostriches and penguins in bird (i.e. the measure of the set of 

total contexts in which they are birds) is always 1. And for non-birds – 

whether butterflies and bats or whether stools and cows – since they are 

members in [bird]
-
M, their membership degree in bird is always 0. 

Intermediate typicality degrees in sharp nouns cannot be indicated using m. 

Since no other means to indicate them is given, i.e. no general mechanism 

to determine distance from the prototype is proposed, intermediate 

typicality degrees in sharp nouns are not accounted for.  

This is especially problematic given that the most prominent examples 

of the prototype theory are indeed sharp predicates. 

 

 3.2 The sub-type effect  

 

Furthermore, the measure function, m, fails to predict the sub-type 

effect, namely, the intuition that the typicality of ostriches in ostrich 

exceeds their typicality in bird. A membership degree (or measure m) is 

never bigger in ostrich than in bird, because in any total context in which 

an entity is an ostrich, it is also a bird (see 2.3.1). This effect is identical to 

the so-called conjunction effect, but is found in lexical nouns, i.e. nouns 

without a modifier, like ostrich vs. bird.  
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Note that the modified membership function, which Partee and Kamp 

add to the model in order to capture the conjunction fallacy / effect (see 

2.3.2), cannot help us here. Why? Because the minimal and maximal ostrich 

degrees in [bird]
+
M are 0 and 1. We can find both complete ostriches (of 

membership degree 1) and complete non-ostriches (of membership degree 0) 

among the birds. Consequently, cm(d,ostrich / bird) is identical to cm(d,ostrich): 

  

cm(d,ostrich / bird)  =  (m(d,ostrich) – 0) / (1-0)  =  cm(d,ostrich) 

 

Thus, we have to keep cm and cP separated in such lexical nouns. It is the 

values of cP which represent the intermediate typicality degrees and the sub-

type effect / fallacy in bird. But, again, Partee and Kamp do not specify how 

exactly the values of cP are determined when cm and cP are dissociated. Thus, 

the sub-type effect in lexical nouns is not accounted for, and in addition to 

this, the separation between cm and cp (in predicates like bird) forces us into 

an inelegant theory, which stipulates as primitives two unconnected sets of 

values for cm and cp.  

Finally, the typicality effects in basic and complex nouns are accounted 

for using separate measure functions (given in [5] in 2.3.1 and [7] in 2.3.2). 

But we would prefer an account using a single mechanism, given that certain 

complex nouns in English are basic lexical items in other languages. For 

example, 'male-nurse' translates into the basic noun ax in Hebrew.  

 

 3.3 The conjunction effect  

 

Worse still, conjunction fallacies in modified nouns are also not dealt 

with correctly (see 2.3.2). Indeed, brown apples are allowed to have greater 

degrees in brown apple than in brown or in apple, as desired, but they are 

ordered only by how brown they are. This yields incorrect degrees. 

Intuitively, an apple of an unusual shape or size, which is therefore 

assigned, say, typicality degree 0.2 in apple, even if maximally brown (of 

typicality and membership degree 1 in brown), is considered an atypical 

brown apple, and not a maximally typical brown apple, or a brown apple to 

degree 1, as predicted by Partee and Kamp's analysis:  

 

cm(d,brown /apple) =  (m(d,brown – a) / (b – a) =         (1 – 0) / (1 – 0) =     1 

 

Thus, assuming that the typicality degrees in brown apple are assigned by 

the modified degree function, is incorrect. We have to assume that the 
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typicality degrees in brown apple are assigned by another mechanism. For 

further empirical support to this argument, see Smith et al 1988. 

There are many naturally occurring examples of utterances which refer to 

typicality in complex predicates. The following examples were found in a 

simple Google search on the Internet, and they contain references to 

typicality in negated and/or modified nouns: 

 

1) What were some exercises you would do on a typical non-running 

day? I read that they are mainly variations of pushups and situps, 

but what exactly are...   

2) ... there is one week where the format will be more typical of a 
non-seminar class...  

3) Thought it [the interview] pretty much typical of a non-fan, non-
entertainment, smart up market British paper … it gives you some 

sense of being there and imagine what it's like to interview a 'star'.  

4) You counter with an anecdotal tale about a non-typical non-
developer. How does your counter-argument apply to a typical 

non-developer?    

5) …her irritating non-performance is typical of a primarily young 

(read 'cheap') cast… 

6) The music is typical of a non-CD game - that is to say, worthless. 
It's tinny and very electronic sounding.  

 

Given these examples, we cannot dismiss the problems in predicting 

typicality in complex predicates on the basis that typicality is inherently 

non-compositional. Though compositionality might be limited to some 

extent, we need an analysis which will more correctly predict speakers' 

intuitions about typicality in complex predicates when such intuitions exist.    

 

 3.4 Partial knowledge  

 

Thus far, we have focused on problems related to the representation of the 

typicality effects in sharp predicates and in complex predicates. Let us add to 

this picture now another classical problem concerning the representation of 

context dependency in the typicality judgments. 

This problem has to do with the fact that the measure functions (or the 

membership functions) are total (in every partial model M, every entity is 

assigned a degree in every predicate), though knowledge about typicality is 

often partial. If one bird sings and the other flies, which one is more typical? 
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Which bird is more typical – an ostrich or a penguin? Many contexts are too 

partial to tell such facts. (Nor do speakers know every typicality feature in 

every partial context. For example is in the home typical of chairs?) The 

representation of knowledge about typicality needs to be more inherently 

context dependent and possibly partial.  

One way to do this is to define the typicality function so that it will give 

each entity a value in a predicate in each total context separately (like the 

interpretation function). In such a way, it would be possible that the 

typicality degree of an entity (just like its membership in a predicate) is 

unknown in a partial model M. It would be unknown if and only if this 

entity's degree varies across different total contexts. However, note that the 

measure function in Partee and Kamp 1995 is defined per supermodel (it is 

a meaure of the proportion of valuations in T in which each item is a 

predicate member), so it is not easy to see how this measure function can be 

relativized to a total context. 

 

 3.5 Numerical degrees 

 

Another problem common both to fuzzy models and to supermodels is 

that numerical degrees are not intuitive primitives. For example, why 

would a certain penguin have a degree 0.25 rather than say 0.242 in bird? 

Partee and Kamp notice this problem and draw a general suggestion for 

a solution in terms of vagueness with regard to the correct measure function 

in each context. In this setting, a context is associated with a set of measure 

functions, such that we may only know in a certain context that, e.g., the 

degree of a penguin ranges between 0.25 to 0.242 in bird. Working this 

idea out would have been a step towards the addition of more context 

dependency into the representation (cf. 3.4!). However, Partee and Kamp 

admit that this is still complex and not quite a natural representation.  

It is true that in the languages of the world the comparative form more P 

than (or less P than) is derived from the predicate form P (which is 

assumed to stand for the concept: P to degree µ) and not vice versa (Klein 

1980; Kamp 1975). Nevertheless, conceptually, at least as far as typicality 

is concerned, representing the typicality ordering denoted by a typicality 

comparative (e.g. the intuition that penguins are less typical than ducks, 

which in turn are less typical than robins etc.), and deriving the degrees 

from this ordering by some general strategy (such that e.g. a penguin would 

have roughly zero typicality in bird) seems to be a more intuitive setting.  

Arguments can be given also for a difference between the linguistic and 

conceptual setting in predicates and comparatives without the typicality 
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operator (Fred Landman, personal communication), but these are beyond the 

scope of this paper.  

  

 3.6 Prototyopes  

 

The notion of a prototyope is problematic in several respects.  

One well known problem concerning this notion is that it is drastically 

unfruitful when it comes to compositionality, i.e., in predicting prototypes of 

complex concepts from the prototypes of their constituents (Partee and Kamp 

1995; Hampton 1997). Consider negations: What would the prototype of 

non-bird be: a dog, a day, a number? Similarly for conjunctions: What would 

the male-nurse prototype be, given that a typical male-nurse may be both an 

atypical male and an atypical nurse (ibid).  

Another problem has to do with predicates which are lacking a prototype. 

For example, there is no maximum tallness. But with no prototypes, the 

intuition that there are typical (and atypical) tall players, tall teenagers, tall 

women etc., is not accounted for. The status prototypical, so it seems, ought 

to be given to an entity only within a context (a valuation) – there are no 

context-independent entity-prototypes.  

Finally, the Supermodel Theory assumes a complicated taxonomy of 

predicate types, with different mechanisms in their meaning (see Table 1 in 

2.3.1): With or without a prototype; with a prototype that affects the 

denotation or that does not affect the denotation; with a vague or a non-

vague meaning etc. This is especially problematic when compositionality is 

addressed (Partee and Kamp 1995). For example, of what type are 

conjunctions of different predicate types, like tall bird, where tall is a 

vague predicate without a prototype, and bird is a non-vague predicate with 

a prototype?   

 

 3.7 Feature-sets 

  

The main idea in assuming entity prototypes is to avoid the notion of 

feature-sets, which Partee and Kamp, following Osherson and Smith 1981 

and Armstrong, Gleitman and Gleitman 1983, see as an ill-defined notion. 

Back from Wittgenstein ([1953] 1968), feature-based models are most 

widespread in the analysis of typicality. Whether feature-sets are represented 

as frames (Smith et al 1988), networks (Murphy and Lassaline 1997), 

theories (Murphy and Medin 1985), vectors in conceptual spaces (Gardenfors 

2004) or otherwise, the main idea is that each feature is assigned a weight. 
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The typicality degree of, say, a robin in bird, is indicated by the weighted-

mean of its degrees in the bird features: How well it scores in flies, sings etc. 

The problem is that features alone do not form a sufficient account. 

Scholars still hardly agree about how the weight of a feature is determined. 

Worse still, we can hardly tell how entities’ degrees in a feature are 

determined. We still need to know what a typicality degree is (Armstrong, 

Gleitman and Gleitman 1983). 

Some scholars try to avoid the problematic notion of feature-sets by 

assuming optimal-entity models. Whether Prototype models (Partee and 

Kamp 1995; Osherson and Smith 1981) or non-abstractionist Exemplar 

models (Brook 1987; Shanks and St. John 1994), the main idea in these 

theories is that a typicality degree is indicated by degree of similarity to a 

representative entity.  

The problem in these theories is that similarity is, in many cases, 

measured by features. One can only categorize novel instances on the basis 

of their similarity to a known prototype or exemplar if there is some means of 

determining similarity, i.e. the connections that exist between the instances 

and the prototype or exemplar (Hampton 1997). And it is for this reason too, 

that, as we saw in 3.6, theories which stipulate prototypes or exemplars for 

each concept, without representing typicality features, fail to predict the 

connections that exist between the prototypes or exemplars of complex 

concepts, and the prototypes or exemplars of their constituents. 

Finally, in eliminating the features from the analysis, the Supermodel 

Theory is silent with regard to the type of properties that speakers regard as 

typical of each predicate in a given context.       

  

 3.8 Conclusions of Part 3 

 

The proposed measure functions fail to capture the fact that there exists 

a range of intermediate typicality degrees in denotation members. Hence, 

they fail to predict typicality in sharp predicates. This is a severe limitation, 

given that the most prominent examples of the prototype theory are indeed 

sharp predicates.  

In addition, the theory fails to correctly represent the conjunction and 

sub-type effects, despite the use of two separate mechanisms, namely, the 

measure function and its modified version. Ideally, we would like to 

represent these effects correctly, and if possible, we would like one 

mechanism to derive both the conjunction and sub-type effects, i.e. 

typicality in basic and complex predicates.   
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We need an improved analysis, which, in addition to capturing the 

typicality effects in sharp and complex predicates, will capture the inherent 

context dependency of the typicality judgments and the gaps in these 

judgments. The analysis should leave context independent prototypes out. 

The status prototypical ought to be given to an entity only within a context 

(valuation).  

Finally, the analysis ought to say exactly how the weight of a feature is 

determined and how degrees in a feature are determined, i.e. what a 

typicality degree is. Ideally, the basic primitive in the analysis will be the 

typicality ordering (the denotation of more / less typical than). Numerical 

degrees will be derived from this ordering by some general strategy.  

In the next part, I propose a new model which, it is argued, improves 

upon the previous analysis regarding precisely these points.    

 

4. My Proposal: Learning Models 

 

So what does a typicality-ordering stand for?  

I believe this ordering is no more than a side effect of the order in which 

we learn that entities fall under a predicate, say, bird. We encode this 

learning order in memory, either during acquisition, or even as adults, 

within a particular context, when we need to determine which birds a 

speaker is actually referring to (the contextually relevant or appropriate set 

of birds).  

 

4.1 Learning Models 

 

Learning models represent information growth. More precisely, they 

represent the order in which entities are categorized under, say, bird, and 

non-bird. We start with a zero context, c0, where denotations are empty, 

and from there on, each context is followed by contexts in which more 

entities are added to the denotations. In a total context t, every entity is 

either in the negative or in the positive denotation of each predicate. 

 

 

 

 

 
 

 

Figure 2: The contexts' structure in a Learning Model 
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For example, birdhood is normally determined first for robins and 

pigeons, later on for chickens and geese, and last for ostriches and 

penguins. Similarly, non-birdhood is detrmined earlier for cows than for 

bats or butterflies:  

 
 

 

 

 

 

Figure 3: An example of a branch in a Learning Model 

 

Formally, I use the information structure called “Data Semantics” 

(Veltman 1984; Landman 1991). A learning model M* for a set of 

predicates A and domain D is a tuple <C ,≤≤≤≤ ,c0 ,T> such that:  

 

[1]  C is a set of partial contexts: in each c in C a predicate P is associated 

with partial positive and negative denotations:  <[P]
+
c,[P]

-
c>. 

 

[2] ≤ is a partial order on C:     ∀P∈A: 

 

1. c0 is the minimal element in C under ≤:  [P]
+
c0=[P]

-
c0 = ∅ 

(Denotations are empty in c0). 
 

 2. T is the set of maximal elements under ≤:  [P]
+
t ∪ [P]

-
t = D  

            (Denotations are maximal in T).  

 

 3. Monotonicity: ∀c1,c2∈C, s.t. c1 ≤ c2:         [P]
+
c1 ⊆ [P]

+
c2; 

     [P]
-
c1 ⊆ [P]

-
c2.           

 

4. Totality: ∀c∈C,∃t∈T: c≤ t   (Every c has some maximal extension t). 

 

I also assume that in c, we consider as P, in addition to directly given Ps 

(i.e. members in [P]
+
c), also indirectly given Ps, i.e. entities whose P-hood 

can be inferrred on the basis of the information in c (see 4.4.2 and 5.2). 

Formally, P-hood of an entity d can be inferrred in c iff d belongs in [P]
+
t in 

any t above c. I call this extended denotation the super-denotation of P: 

   

5. "Super-denotations":     [P]c = ∩{[P]
+
t| t∈T,c≤t};  

 [¬P]c = ∩{[P]
-
t| t∈T,c≤t} 

[bird]c0    …   [bird]cj     …         [bird]cn      …                [bird]ts 
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4.2 The typicality ordering 

 

Given this basic ontology, I propose that we consider d1 more typical of 

P than d2 in a context t if and only if:  

 

Either the P-hood of d1 is established before the P-hood of d2 (i.e. in a 

context that proceeds the context in which d2 is added to the positive 

denotation),   
Or the non-P-hood of d2 is established before the non-P-hood of d1 (i.e. 

in a context that proceeds the context in which d1 is added to the negative 

denotation).   
 

Formally, P's typicality ordering in t is the order in which entities are 

learnt to be P or ¬P in contexts under t:  

 

[3]   ∀∀∀∀t∈∈∈∈T:   (<d1,d2> ∈∈∈∈ [≤≤≤≤P]
+
t) if and only if:    

∀c≤t:    (d1∈[P]c → d2∈[P]c)     &    (d2∈[¬P]c → d1∈[¬P]c).  

 In any total t, d1 is equally or less (typical of) P than d2 iff  

 In any context c under t, if d1 is P, d2 is P, and if d2 is ¬P, d1 is ¬P. 

 

Entity pairs might be added to ≤P in c either on the basis of direct 

pointing at them as standing in the relation more typical of P, or on the 

basis of indirect inferences from the rest of our knowlegde in c. That is, the 

extended typicality relation that holds between two entities in a partial 

context c can be formally defined using the supervaluation technique, as is 

usually done for propositions (Van Fraassen 1969):     

 

∀∀∀∀c∈∈∈∈C:   (<d1,d2> ∈∈∈∈ [≤≤≤≤P]c)   iff:  ∀t≥c:    (<d1,d2> ∈ [≤P]
+
t)    

In any partial c, d1 is equally or less (typical of) P than d2 iff  

In any total t above c, d1 is equally or less (typical of) P than d2. 

 

Different ways to refer to ≤P differ in truth conditions. For instance, d1 

may be more of a kibbutznik but less typical of a kibbutznik than d2 (if, say, 

d2 has left the kibbutz but still looks and behaves like a kibbutznik). Yet, I 

believe that we need not pose different definitional constraints on more P, 

more typical P and more relevant P. The difference between these three 

comparative phrases is pragamatic in nature: It is generally assumed that 

the comparative more P makes use of a semantic ordering dimension in the 
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meaning of P (Kamp 1995; Bartch 1984, 1986). Conversely, more typical 

(of a) P makes use of different, or additional, ordering properties, namely, 

criteria from world knowledge, not just semantic criteria. Finally, relevant 

P makes use of completely ad-hoc properties, not just world knowledge or 

semantic criteria. The effect of the ordering criteria on the ordering relation 

(and of the ordering relation on the ordering criteria) will be further 

discussed in 4.9-4.10. At this point, note only that, as desired, a possibly 

different ordering relation may be associated with a predicate in each 

context. This much context dependency is required in order to capture the 

typicality effects correctly (for further discussion of this point, see 4.8).  

In the rest of part 4 we will see that a number of long-standing puzzles 

are now solved. 

 

4.3 Deriving degrees 

 

Numerical degrees are not directly given. The primitive notion is of 

ordering, which is more intuitive (cf. 3.5). However, numerical degrees can 

be derived easily, when needed, so that their ordering would conform to the 

typicality ordering.  

For instance, assuming the facts in context ts in Figure 3 above, and a 

small domain which consists of the six birds in the picture (a robin, a 

pigeon, a goose, a chicken, an ostrich and a penguin) and two non-birds (a 

butterfly and a cow), the robin would have degree 1 because everything, 

i.e., all 8 entities, is equally or less typcal than it. The goose would have 

degree 6/8 because only 6 of 8 entities are equally or less typcal than it, and 

so on. 

Vagueness with regard to degrees (cf. 3.5) would be derived from gaps 

in the typicality ordering (see 4.8 below).  

 

4.4 Intermediate typicality degrees for denotation members 

 

4.4.1 Intermediate degrees 

 

Recall that degrees of denotation members in Partee and Kamp's model 

were always maximal, i.e. 1. This is not the case in the current model. 

Rather, the earlier we learn that an entity is, e.g. a bird, the more typical we 

consider this entity to be.  

Therefore, now we can account for the typicality effects in sharp 

predicates, which were problematic for Partee and Kamp. The typicality 

ordering, or graded membership effect, results from the fact that, in 
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acquisition, or while disambiguating predicate meaning within a particular 

context, speakers encode different bird types in memory gradually. 

(Consider for a moment the predicate prime number. Despite its clear 

formal definition, the status of very big numbers with respect to prime is 

yet to be discovered by mathematicians!) 

In Partee and Kamp 1995, the denotations of non-vague predicates (e.g. 

bird) are represented as total, Fregean entities, independent of speakers' 

experience or belief. But we already saw that typicality is connected to the 

set of entities which a speaker knows and considers relevant in a context 

(cf. 1; 3.4; 4.2). Moreover, the graded structure proposed in 4.2 does not 

interfere with the assumption that the denotation of bird, unlike the 

denotation of chair, though learnt gradually, is (normally) already fully 

specified in actual contexts of utterance. It is quite plausible to assume that 

it is already fully specified earlier in the context structure than the 

denotation of chair (which is more inherently vague). That is, the 

difference between vague and non-vague predicates (+/- Vague) is of 

quantity, more than of quality.  

Finally, this intuitively felt difference between vague and non-vague 

predicates may have to do with other factors besides the level of vagueness 

in the denotation. Clearly, no speaker carries in mind an infinite list of all 

birds and non-birds. Crucially, an algorithm that enables speakers to 

determine the birdhood, or non-birdhood, of every new entity, can replace 

the assumption that the bird denotations are fully specified.  

In 5.2 we discuss one such algorithm. We will see that the specification 

of only a few birds and a set of features allows speakers to automatically 

determine the birdhood of new items. The status of a novel item remains 

undetermined only if every known bird scores better than that item in the 

bird features, and that item scores better than every known non-bird in the 

bird features. However, this algorithm also applies to vague predicates like 

chair. Therefore, I would now like to draw attention to another algorithm, 

which, crucially, affects vague and non-vague predicates differently. 

 

4.4.2 +/- Vague 

 

Certain predicates such as prime or chair have a semantic necessary 

condition for membership. For example, the property piece of furniture is 

regarded as necessary for membership in [chair]
+
c in a context of utterance 

c if and only if in every total context t extending c, every chair is a piece of 

furniture. Let the PI be a shorthand for the phrase: positive integer that has 

no positive integer divisors other than 1 and itself: 

http://mathworld.wolfram.com/PositiveInteger.html
http://mathworld.wolfram.com/Divisor.html
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[4] The predicate PI is a necessary condition for membership 

  in the denotation of prime number in a context c iff: 

 ∀t∈T, t≥c: [prime number]
+
t ⊆ [PI]

+
t.  

 

A predicate is a semantic necessary condition if and only if a competent 

speaker regards it as necessary in every context of utterance. 

The difference between vague and non-vague (sharp) predicates is that 

only in sharp predicates, like prime, the necessary condition can be treated 

also as a sufficient condition for membership and we may feel that we have 

a precisely defined denotation (though in contexts this assumption of 

sufficiency may be dropped, when speakers refer to a more restricted set of 

relevant prime numbers).  

 

 The predicate PI is a sufficient condition for prime numbers in a 

 context c iff: 

 ∀t∈T, t≥c: [PI]
+
t ⊆ [prime number]

+
t  

 

In contrast, with chair, the semantic necessary condition for 

membership, piece of furniture, definitely cannot be sufficient, since it 

doesn't distinguish chairs from other close sub-categories: table, lamp etc. 

Thus, predicates like chair are regarded as vague:  

 

In most contexts of utterance c, a competent speaker regards the 

predicate piece of furniture as necessary for chairhood:  

 ∀t∈T, t≥c:  [chair]
+
t ⊆ [piece of furniture]

+
t.  

But not as sufficient for chairhood:  

 ¬¬¬¬∀t∈T, t≥c: [piece of furniture]
+
t ⊆ [chair]

+
t.  

 

Other predicates, such as bald, that do not have any semantic necessary 

condition for membership, are regarded as vague, too. 

In sum, we saw that factors other than the level of vagueness in the 

denotation may be responsible for the intuitive distinction between vague 

and sharp predicates. We also saw that we are now able to correctly 

represent typicality in denotation members and sharp predicates. Next we 

will see that the second classical problem, i.e. the conjunction fallacy or 

effect, including its special sub-case – the sub-type effect (see 3.2-3.3), is 

also readily solved. 
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4.5 The sub-type effect 

 

Sub-type effects can now be accounted for: The typicality degree of 

ostriches is greater in the predicate ostrich than in bird: if they are 

categorized late in bird, relative to other bird types, but early in ostrich, 

relative to other ostriches! Since this is a natural state of affairs, in most 

contexts typical ostriches are indeed considered as atypical birds.   

For example, in the birds' model given in 4.3 above, the ostrich has a 

degree 2/8 in bird, because only 2 of 8 entities are equally or less typical 

than it in bird. Hence, it is an atypical bird in ts. Yet, we can reasonably 

assume that this entity is the first member in the denotation of ostrich in ts, 

i.e. its degree in ostrich is 1. Thus, it is both an atypical bird and a very 

typical ostrich in ts. 

 

4.6 The conjunction effect 

 

Conjunction effects or fallacies are similarly accounted for: The degree 

of brown apples is greater in brown-apples than in apple, when they are 

categorized late under apple, relative to other apple-types (red, green etc.), 

but early under brown apple, relative to other brown apples. 

Similarly, the typical male-nurses are atypical males when the earliest 

known males are not nurses. The typical male-nurses are also atypical 

nurses when the earliest known nurses are not males.  

These facts fall into place without any new stipulations for complex 

predicates. 

 

4.7 The negation effect 

 

Negation effects are also accounted for without any new stipulations. 

The ordering of non-bird is, by the definition of a typicality ordering in 4.2, 

inverse to the ordering of bird in each context (for supporting evidence, see 

Smith et al 1988).  

Exceptions to this generalization (cf. 2.1) are accounted for, since this 

inverse pattern is predicated only for the logical negation of a predicate. If a 

negated predicate like non-bird is contextually restriced to, say – animals, 

then it is not equivalent to the logical negation of bird and hence its 

ordering is not predicted to be inverse to the ordering of bird.      
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The third classical problem is the representation of partial and context 

dependent knowledge about typicality (see 3.4, 3.6). Let us see how the 

current proposal handles in these issues as well. 

 

4.8 Partial knowledge  

 

In a learning model, typicality degrees or relations may be unknown: A 

pair, say – a penguin and an ostrich, is in the gap of the ordering more 

typical of a bird in a context c, if it is still possible in c (i.e. true in some 

context following c) that the penguin is more typical in bird, and it is still 

possible that the ostrich is more typical in bird.  

For example, if in context cl in the learning model in Figure 2 (see 4.1), 

the penguin is already known to be a bird, but the ostrich is not yet known 

to be a bird, and in context cf the ostrich is already known to be a bird but 

the penguin is not yet known to be a bird, then, in context ci we do not yet 

know which bird is more typical, the penguin or the ostrich.  

 

4.9 Context dependency  

 

4.9.1 Context dependent ordering relations  

 

The inherent context dependency of the typicality judgments is now 

predicted. Context independent (or valuation-independent) ordering 

relations are not part of the theory. As desired, the typicality ordering is 

defined per total context in the learning model.  

But how is a contextual typicality ordering fixed? Context dependency 

in the interpretation of domains of quantifiers and conditionals is accounted 

for (Kadmon and Landman 1993; von Fintel 1994) by assuming that a set 

of properties restricts the domain to the set of relevant members in each 

context. Similarly, it is plausible that, within context, a set of properties 

(features) restricts predicate denotations to the set of relevant denotation 

members, those members, which the speaker is actually referring to (for a 

detailed discussion of the mechanism in which denotations are contextually 

restricted via properties, see Kadmon and Landman 1993; Sassoon 2002; 

and also 4.10 below). 

Given this set of restricting features, the relevant typicality ordering of a 

predicate P in each context of utterance, is the ordering of the conjunction 

of P and its restricting properties. For example, chickens usually precede 

robins in being regarded as both birds and walking in the barnyard. Hence, 

their typicality degree in bird in the context of the utterance birds walking 
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in the barnyard is predicted to exceed that of robins, as Roth and Shoben 

indeed found (see part 1). 

 

4.9.2 Context dependent prototypes  

 

Context independent (or valuation-independent) prototypes, in 

particular, are not part of the theory at all (cf. 2.3.1, stipulation [5] in Partee 

and Kamp's model). In the current proposal, in each context, some entities 

are the best in each predicate: The earliest entities, among the available 

entities, which are known to be denotation members. In this way, we 

account for the ordering in typical tall person despite the fact that, out of 

context, there is no maximal tallness.  

In addition, eliminating the prototypes from the theory considerably 

simplifies the taxonomy of predicates: The distinction between predicates 

without a prototype, predicates with a prototype that does not affect the 

denotation, and predicates with a prototype that affects the denotation (cf. 

2.3.1, stipulation [6]), is eliminated.  

The intuitively felt differences between these predicate types is 

accounted for, again, in a quantitative rather than qualitative manner. These 

differences are induced by different extents of context dependency in the 

meaning of the predicate and its derived comparative. For example, in 

taller, the ordering criterion, and hence the ordering relation, is fixed 

semantically. But in more typical of a tall person, player, tree etc., typical 

associates more features with the predicate tall (context dependent ordering 

criteria). So the NP typical tall person, like typical bird, associates with a 

context dependent ordering relation. Such a context dependent ordering 

relation must be indicated by the operator typical. 

 

4.9.3 +/–Gradable, +/–Prototype 

 

Put more formally, +Gradable predicates, like tall and bald, (i.e. 

predicates that can directly combine with more) are distinguished from –

Gradable predicates, like bird (that cannot combine with more unless 

modified by an operator like typical), in the following way:  

Predicates like bald may not have a necessary condition for membership 

(cf. 4.4), but they do have a semantic ordering feature (see 4.10 for the 

definition of such a feature). Moreover, crucially, this ordering feature can 

be treated as a necessary condition for membership in the derived 

comparative ≤bald in a context of utterance c: 
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∀t∈T, t≥c: [is more bald]
+
t  ⊆  [has less hair]

+
t  

i.e. if d1 is more bald than d2, then d1 has less hair than d2.   

 

This single ordering feature can be treated also as sufficient for 

membership in the ordering relation in c, and hence, we may feel that we 

have a precisely defined ordering relation:  

 

∀t∈T, t≥c:  [has less hair]
+
t ⊆ [is more bald]

+
t  

 

Other predicates, like bird or prime, do not have a single ordering 

feature: Out of context they have no semantic ordering criterion at all, and 

within contexts they are frequently associated with several ordering criteria 

(Kamp 1975). This can even happen with gradable adjectives like bald 

when, say – psychological features related to baldness are treated as 

ordering bald by typicality. In these contexts, has less hair cannot be 

treated as sufficient for membership in the ordering relation ≤bald, because 

one may be grasped as balder (or as more typical of a bald person) than 

other people with an equal or greater amount of hair (which nonetheless 

are psychologically more influenced by their baldness). When nothing is 

treated as necessary and sufficient for membership in the ordering relation, 

it remains vague and the predicate is felt to be –Gradable.  

However, when a –Gradable predicate is associated with a set of 

ordering features, we do have partial knowledge regarding the ordering of 

entities. In particular, best cases can be identified: Those entities that satisfy 

all the ordering features are regarded as prototypes. Hence, predicates like 

chair, bird or flu are normally regarded as + Prototype.  

This proposal predicts that a complex predicate would not be grasped as 

gradable even if its parts are gradable. In fact, such predicates do not 

combine with more: 

 

7) * d1 is more midget giant than d2  

8) * d1 is more fat bald than d2  

9) * d1 is more clean tall than d2  

 

They have two potential ordering criteria, so neither functions as 

sufficient for membership in their ordering relation. The appropriateness of 

more P seems to depend on the existence of a sufficient ordering criterion. 

In fact, even when P is sharp, more P improves whenever such a criterion 

becomes salient (e.g. more pregnant).  
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What about multi-dimensional gradable predicates such as healthy? 

These predicates seem to be misrepresented in the current proposal. They 

are felt to be +Gradable, not +Prototype (they directly combine with more), 

despite the fact that they are associated with a set of dimensions, not a 

single ordering dimension! For instance, one may be regarded as healthy if 

one is generally healthy, i.e. healthy with respect to hair, heart, blood 

pressure, fever, skin etc. None of the comparatives derived from these 

dimensions (nor the conjunction healthier with respect to hair and 

healthier with respect to heart and…) can be treated as necessary and 

sufficient for membership in the comparative ≤healthy (for example, one 

may be regarded generally healthier than others, while being less healthy 

with respect to, say, the skin). Yet, healthy can directly combine with more.  

I believe that multi-dimensional gradable predicates like healthy are not 

associated with a set of ordering features in precisely the same way that 

+Prototype predicates, such as bird, are. In multi-dimensional gradable 

predicates we use (even explicitly), quantification over ordering 

dimensions, or respects (Bartch 1984; 1986): generally healthy, healthy in 

every respect etc. (i.e., a universal or generic quantifier ranges over the 

variety of ordering dimensions). The predicate is ordered by one dimension 

at a time. This is not the case with +Prototype –Gradable predicates like 

bird. Indeed, we do not usually say, or intend to say, that an entity is 

generally a bird or a bird in every respect.    

 

4.10 Typicality features  

 

Finally, the fourth classical problem, i.e. that of defining the notion of a 

typicality feature (or an ordering dimension), can now be dealt with. For 

each predicate P, speakers consider certain features as typical of P, e.g 

feathers, small, flies and sings are normally regarded as typical of birds. In 

addition, it is common in Philosophy and Psychology to assume that each 

feature is assigned a weight, and generally, the typicality degree of say, a 

robin in bird, is indicated by the weighted-mean of its degrees in all the 

bird features: How well it scores in flies, sings, small etc. However, 

scholars still cannot tell the exact conditions under which a property is 

regarded as a typicality feature and  they hardly agree about how a weight 

of a feature is determined.   
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4.10.1 Ceteris paribus correlation 

 

Having stated what a typicality ordering is (cf. 4.2), we can now state that 

a property like flying or being-small counts as a typicality feature of a 

predicate like bird iff the ordering in the feature correlates with the ordering 

in bird ceteris paribus i.e.:  

 

[5]  Any entity more typical in flying than other entities, and not less 

typical in other features like small, is more typical of a bird.  

 

Exceptions (items which are more typical in flying but less typical in 

bird or vice versa) are allowed when (and only when) the ordering in two 

bird-features (e.g. flying and small) is inverse.  

 
4.10.2 Feature weights  

 

Given this generalization, we can now state that the greater the overlap 

between the typicality ordering (the set of entity pairs where the former 

entity is more typical than the latter entity) of a feature and the typicality 

ordering of bird, the higher the feature’s weight, i.e. the more central it is 

considered in ordering birds. Formally, the weight of a typicality feature F 

is indicated by the extent of overlap between (or the relative size of the 

intersection of) its orderings, ≤F, and P’s ordering, ≤P:  

 

[6] The weight of F in P : =  |([≤F]t ∩[≤P]t)|/|(D×D)| 

 

For example, the ordering of bird and of small (which in the context of 

bird means a robin-sized-bird) are identical with only few exceptions, so 

this feature’s weight is significant. It plays a central role in ordering entities 

by typicality in bird: 

 

 

 
    

 

 

 

Figure 4: High overlap between the typicality-ordering of bird and of small / flies  

 (Birds in the same block are, roughly, equally typical); 

  Exceptions are marked in red circles.  

Bird: 

Small: 

Flies: 
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However, a property might exist, like – animal, with an ordering which 

correlates ceteris paribus with the ordering in bird as required, i.e. any 

entity more typical in animal than other entities, and not less typical in 

other bird features, is more typical of a bird. However, the overlap between 

the ordering of bird and that of animal is poor, since many typical animals 

are atypical birds (most of them are actually not birds at all). Therefore, the 

feature weight of animal is not significant.       

We can now assume that the set of predicates in our language also 

consists of (in addition to 'normal' predicates, which denote sets of 

individuals) predicates of the form: a typical feature of P. These predicates 

denote sets of features. The denotations of these predicates grow gradually 

through contexts, just like any other predicate denotation (for a detailed 

discussion of a model with such feature sets, see Sassoon 2002).    

 

5. What exactly do Learning Models model? More findings 

 

In part 4, we saw that, by assuming that the typicality ordering is no 

more than a partial order, which stands for the order in which entities are 

learnt to be members or non-members in a denotation, we shed light on a 

variety of typicality effects which are traditionally regarded as puzzling.   

However, two more clarifications with regard to the concept “learning 

order” are required. Both have to do with the fact that the learning order as 

it is encoded in memory is not always equivalent to the actual temporal 

order in which items are added to the denotation, due to two factors.  

 

5.1 Corrections 

 

The first factor has to do with our ability to make corrections in our 

knowledge. What if my initial exposure to birds was through ostriches?? 

Initially, I would think that ostriches are representative birds. Later on, I 

would have to correct my beliefs. Formally, I would jump to a different 

branch in the context-structure, where ostriches are indeed represented as 

less typical than other birds. Indeed, it is known that first exposure to an 

atypical item slows down acquisition (Mervis & Pani 1980). Why? Because 

learners induce wrong category features: For instance, in our example, 

wrong optimal size, running instead of flying etc.  
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5.2 Inferences: Indirect learning  

 

The second factor has to do with indirect learning, i.e. with our ability to 

add items to the denotation even if they were never given to us as such. We 

can infer the membership of certain new items by using the knowledge 

given to us already by the known denotation members and features. I 

assume that – if one has knowledge about the bird features (unlike the 

children in the experiments of Mervis & Pani 1980, just cited) – then new, 

previously unavailable entities, which are better than known birds in the 

bird-features, once they become available, are automatically regarded as 

birds, too (otherwise rule [5] in 4.10.1 will be violated; Sassoon 2002). So 

we have a learning algorithm which overcomes arbitrary gaps in our 

learning order. For example, categorization of, say – a chicken or a goose, 

in bird – implies the bird-hood of anything more typical than a chicken or a 

goose, like a duck, once it is available. Indeed, it is also known that 

previously unavailable typical instances are frequently (falsely) assumed to 

be known: (Reed 1988). Why? Given their high scores in the typicality 

features, they should already be known denotation members!  

But, not so for atypical ones. For example, if the known birds are 

robins, pigeons, geese and chickens, in the exposure to ostriches we would 

not infer their bird-hood automatically. They would remain in the gap 

because it is still possible that they diverge too much from the known birds. 

Hence, they are regarded as less typical.  

An intruiguing evidence for indirect learning of this sort was found in a 

study of aphasic patients by Kiran & Thompson, which was based on 

previous findings in neural network simulations. These studies demonstrate 

that exposure to a whole range of atypical items and features results in 

spontaneous recovery of categorization of untrained more typical items, but 

not vice versa.. That is, the membership of more typical instances can be 

indirectly automatically inferred from the membership of less typical 

instances, but not vice versa, as predicted. 

 
5.3 Conclusions of part 5  

 

Initially, direct learning of the category membership of certain entities 

occurs, and possibly also direct learning of certain typicality features. The 

order of learning the category members is encoded in memory. Then, this 

ordering is enriched and corrected, based on indirect inferences. If the 

learning-order of a property highly correlates with the category learning-

order, this property is treated as a typicality feature, too. In addition, in the 
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exposure to new entities, more entities are added to the denotation. If the 

new entities score highly in the typicality features, corrections in the 

learning order are made, such that these entities are encoded as typical. In 

this way, speakers overcome the effects of arbitrary gaps in their learning 

order.     

 

6. Conclusions 

 

In addition to the coupling between typicality and learning (which is 

demonstrated by a range of studies), learning models capture a wide range 

of typicality effects which were long-standing puzzles. These puzzles 

include the typicality effects in sharp and complex predicates (in particular 

the conjunction effect /fallacy), the context dependency and partiality of the 

knowledge about the typicality relations and degrees, and the definition of a 

feature and a feature weight.   

Unlike previous theories (fuzzy models or supermodels), the current 

proposal predicts the typicality effects in complex predicates without any 

new stipulations for the purpose, i.e. without a complement rule for negated 

predicates and a minimal degree rule (cf. 2.1) or a modified membership 

function (cf. 2.3.2) for modified nouns.  

By insisting on a highly context dependent representation for the 

typicality ordering, a number of theoretical entities are eliminated from the 

analysis, among  which are the context independent prototypes and the 

measure functions.  

The coupling between typicality and membership is captured via the 

gradual learning of the denotation members. This spares us the need to 

stipulate two separate sets of values for the membership function and the 

typicality function, and renders the theory more elegant.  

In addition, the taxonomy of predicate types is drastically simplified. 

The intuitively felt differences between predicate types are accounted for 

using the (well-defined) notions of ordering features, of necessary and 

sufficent conditions for membership, and of partial ordering relations. 

Unlike the measure function over sets of valuations, these notions are 

psychologically real: There is abundant evidence that speakers associate 

predicates with partial sets of ordering relations, ordering features, and 

necessary conditions for membership.     

Given the elegance and the wide array of predictions of the learning 

model, it seems that our understanding of the typicality effects and their 

relation to predicate meaning, has considerably improved.  
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