An interpersonal approach to predicates of personal taste

There is something quite peculiar about predicates of personal taste (henceforth PPT) such as fun and tasty. On the one hand, as their name suggests, these predicates exhibit personal taste and therefore are essentially subjective. On the other, they give rise to disagreements such as:

(1) Suzy: This cake is tasty
 James: No, it's not!

Following Lasersohn's (2005) seminal paper on PPT, this phenomenon is commonly taken to support a relativist view which distinguishes between the content over which both conversational participants disagree, and the truth conditions which are assigned to this content. In the example above, the two parties utter contradictory contents (i.e. there is no index of evaluation under which both are true) which serves to explain the disagreement. However, each content is assigned a truth value at an index of evaluation that includes in addition to the usual parameters of world and time, a judge parameter, which determines the truth value of tasty. Thus, the disagreement is "faultless", since both parties' assertions are true relative to different judges.

While the theory does a good job explaining faultlessness, the account of disagreement falls short in both the semantic and the pragmatic aspects. Semantically, in a Kaplaian framework (in which Lasersohn works) contradicting propositions are not enough to constitute disagreement (cf. MacFarlane, 2006). Pragmatically, Lasersohn's theory states that utterances of PPT are usually made from an autocentric stance, i.e. the default judge is the speaker. Therefore, in the default case both parties will recognize that each is talking about their own taste, so what is there to argue about? (cf. Stojanovic, 2007). Moreover, PPT can participate in inferences such as modus ponens\(^1\), in which there is no place for a judge-relative truth value:

(2) Suzy: If the cake I made is tasty, then the birthday party will be successful
 James: The cake you made is indeed tasty

The conclusion immediately follows, even though there is no straightforward way to determine the judge. Problems such as these have prompted some solutions which are more objective. Recanati (2007) suggests that utterances such as "the cake is tasty" mean "the cake is tasty for us", i.e. for the community to which the speaker and his audience belong. The utterance "the cake is tasty for me" is, by Recanati, a weaker claim. But then (3a) should be better than (3b), when in fact both are infelicitous:

(3) a. #The cake is not tasty, but for me it is tasty
 b. #The cake is not tasty for me, but it is tasty

An account of PPT, therefore, should not be too subjective, but also not too objective. Such an account has been given by Wolf & Cohen (to appear) w.r.t. the predicate clear, which is an evaluative predicate and like tasty gives rise to faultless disagreement. By this interpersonal approach PPT express "objectivized" belief. The speaker takes into consideration various individuals whose judgment she considers

\(^1\) Based on the Geach's (1965) argument, originally meant for ethical predicates such as right/wrong.
with a high regard (these individuals may or may not include the speaker herself). Thus, an utterance such as Suzy’s in (1) is a claim that individuals whose judgments about taste matters indeed matters, will conclude that the cake is tasty. This is formally done using a mixture model (cf. Cohen, 2010) composed of various individuals \(i \), each of which has a certain degree of belief in the proposition \(\text{tasty}(z) \). This degree is represented as a probability measure (Kamp, 1975):

\[
P_i(\text{tasty}(z)).
\]

Each individual \(i \) is then assigned a weight \(w_i \), reflecting their degree of authority in matters of taste. The sum of all weights is 1, making the weighted average of all individuals a probability measure in itself – a mixture model:

\[
P_{\text{mixture}}(\phi) = \sum_{i=1}^{n} w_i \times P(\phi)
\]

Each vague predicate \(Q \) is associated with a delineation function (Lewis, 1970) \(d(Q) \), which returns the threshold for a true application of \(Q \). Then, "\(z \) is tasty" is true iff the value of the mixture model is greater than \(d(\text{tasty}) \):

\[
\sum_{i=1}^{n} w_i \times P_i(\text{tasty}(z)) > d(\text{tasty})
\]

This approach explains disagreement in an objective sense – each party claims that people with sound judgment will conclude that the cake is tasty. And, once the probability value of \(d(\text{tasty}) \) is surpassed by the probability value of the mixture model the result is an objective truth value "true", which allows PPT to participate in logical inference. The Faultlessness is accounted for subjectively – each party selects and assigns weights to the individuals who compose the mixture model.